VARIATIONS ANATOMIQUES POSTURALES CHEZ LES POPULATIONS FRANCILIENNES DU MOYEN-ÂGE AU XVIIÈME SIÈCLE (VAL-DE-MARNE, FRANCE). L’EXEMPLE DES DISPLASIES LUXANTES DE LA HANCHE ET DES MALFORMATIONS ARTICULAIRES DU GENOU.

DJILLALI HADJOUIS

RÉSUMÉ
Chez les quadrupèdes, la variation inter-spécifique de certaines espèces mammaliennes est surtout liée à la présence d’une diversité au sein du genre dont les apports, génétique et paléoenvironnemental, sont déterminants. Pour bon nombre d’espèces animales, la variation intra-spécifique reste en revanche limitée au polymorphisme et au dimorphisme notamment sexuel.

Lors de l’acquisition de la bipédie, le déplacement du centre de gravité au cours de la phylogénèse a mis en place une instabilité posturale des côtés gauche et droit. Cette instabilité est inexistante chez les quadrupèdes du fait de la disposition des trains avant et arrière. Chez l’homme, de nombreuses adaptations asymétriques se sont développées dont les causes sont connues ou idiopathiques (déformations rachidiennes, malformations de la hanche, anomalies articulaires coxo-fémorales, malformations du genou, malformations du pied ...). Les variations anatomiques posturales, notamment celles qui touchent les 3 centres articulaires de la ligne de charge du membre inférieur (tête du fémur, articulation du genou, articulation astragalo-calcanéenne) mettent en évidence certaines adaptations morpho-fonctionnelles qui peuvent dans certains cas, caractériser le type de populations.

En effet, la fréquence des variations anatomiques de la hanche et du genou (anomalies et autres affections) chez les populations villageoises du Moyen-Âge val-de-marne dénotent le caractère familial et héréditaire.

Mots-clés : variation, luxation, Genu valgum, Genu varum, biomécanique fonctionnelle.

ABSTRACT
Among the quadrupeds, the interspecific variation of some mammalian species is especially related to the presence of a diversity within the genus whose contributions, genetic and palaeoenvironmental, are determinant.

For considerable animal species, the intraspecific variation remains on the other hand limited to polymorphism and in particular sexual dimorphism.

At the time of the acquisition of the biped, the displacement of the centre of gravity during phylogenesis set up a postural instability of the left and right sides. This instability is non-existent in the quadrupeds because of the disposition of the nose gears and rump.

Among the man, many asymmetrical adaptations developed whose causes are known or idiopathic (rachidian deformations, malformations of the hip, articular coxo-femoral anomalies, malformations of the knee, malformations of the foot).

Postural anatomical variations, in particular those which affect the 3 articulat centers of the line of load of the lower limb (head of the femur, articulation of the knee, articulation of the ankle-bone and calcaneum) highlight some morpho-functional adaptations which can, in certain cases, characterize the type of populations.

Indeed, the frequency of the anatomical variations of the hip and the knee (anomalies and other diseases) in the rustic populations of the Middle Ages of Val-de-Marne indicate the family and hereditary character.

Key-words : variation, luxation, Genu valgum, Genu varum, functional biomechanics

INTRODUCTION
Les travaux sur l’adaptation et la locomotion des hominidés anciens et modernes et leur relation avec les anomalies posturales à tous les niveaux du squelette (charnière occipito-cervicale, déviation de la colonne vertébrale de type scoliose et cyphose, articulation de l’épaule, articulation du genou, articulation de la cheville,

Laboratoire départemental d’Archéologie du Val-de-Marne, 57 rue Guy Moquet, 94800, Villejuif, djillali.hadjouis@eqp94.fr

Article reçu le 09.02.2006, accepté le 30.08.2006
ceinture pelvienne), sont rares, voire inexistants en Paléontologie humaine et en Paléoanthropologie.

Afin de comprendre les adaptations morphofonctionnelles de l’Homme ainsi que ses dispositions posturales anormales ou pathologiques, intervenues à la naissance ou lors des processus de croissance, à la suite de séquelles traumatisques, ou suite à des pathologies généralisées sévères, il nous a été nécessaire dans un premier temps d’étudier :

- L’Anatomie comparée, la locomotion et le port de tête en relation avec le mode alimentaire de certains grands vertébrés mammaliens (Cervidae, Bovidae, Equidae)
- L’analyse architecturale normale, anormale et pathologique du crâne humain moderne et fossilé
- La Paléopathologie du rachis et du squelette appendiculaire

Ainsi, les asymétries cranio-faciales n’influencent-elles pas le rachis et les ceintures, mais surtout l’occlusion, de même qu’à l’inverse, une asymétrie du squelette des membres ne réagit-elle pas en conséquence jusqu’au niveau de la base du crâne et par le biais d’une colonne vertébrale, elle aussi soumise aux modifications sous-et suspelviennes.

Les recherches anatomiques que nous avons effectuées sur les grands vertébrés notamment les ongulés quaternaires amènent à des considérations non seulement d’ordre alimentaire mais aussi locomoteur. En effet, l’allongement des vertèbres cervicales, témoin d’une adaptation à la course, peut être mis non seulement en relation avec la morphologie des métacarpes et la position du centre de gravité du corps mais aussi avec le port de tête. Chez l’aurochs, un port de tête surélévé, caractérisé par une alimentation de type mangeur de feuilles est en relation avec un allongement des métacarpes et des extrémités distales ayant une largeur proportionnelle à la longueur de l’os. Cette disposition caractérise une locomotion sur des terrains durs [HADJOUIS, 1985]. Chez les buffles fossiles et actuels et les Bisons, les métacarpes sont relativement courts et présentent des extrémités distales larges les predisposant à une locomotion plutôt sur des terrains meubles. Le port de tête bas de ces ongulés quadrupèdes est mis en relation avec un mode alimentaire de type brouteur ou tondeur d’herbes [HADJOUIS, 1985, SERRE et HADJOUIS, 1989]. La position du garrot par rapport à la croupe montre une meilleure assise du train avant chez certains (buffles, bisons) ramenant le centre de gravité vers l’avant du corps, chez d’autres (aurochs), garrot et croupe sont au même niveau, c’est à dire au centre du corps.

La position de la tête des mammifères quadrupèdes en porte-à-faux par rapport au reste du squelette post-crâniien et non pas au dessus d’une colonne vertébrale de type bipède, n’a eu incontestablement aucune influence anormale ni sur l’occlusion, ni sur l’architecture crano-faciale, et encore moins sur le rachis, positionné comme un pont suspendu entre le garrot et la croupe (fig.1). L’occlusion équilibrée de l’ensemble des vertèbres mammaliens et une harmonie crano-faciale sont en dehors de toutes contraintes directes d’une anomalie particulière du squelette des membres, y compris chez les animaux porteurs d’appendices frontaux ou nasaux comme les Cervidés, les Giraffidés, les Bovidés ou les Rhinocérotidés.

![FIG. 1. — La stabilité posturale chez les quadrupèdes](image)

De même, la disposition de plusieurs centres de gravité, l’un au milieu du corps, équilibrant avant et arrière-train ainsi que les autres qui équilibrent les côtes gauche et droite a réduit les éventuelles asymétries. On peut dire que dans l’ensemble des mammifères que nous avons étudié, il n’existe pas véritablement d’anomalies posturales gauches et droites dans le sens d’asymétries dimensionnelles chez les animaux sauvages, fossiles ou actuels en dehors des effets de la domestication, des animaux de captivité et des bêtes de somme [HADJOUIS, 2003]. Par ailleurs, chez les quadrupèdes, il est nul doute que la variation inter-spécifique de certaines espèces mammaliennes reste surtout liée à la présence d’une diversité au sein du genre, alors que pour un grand nombre d’espèces animales, la variation intra-spécifique reste en revanche limitée au polymorphisme et au dimorphisme notamment sexuel.
STABILITÉ ET INSTABILITÉ POSTURALES :
Centres de gravité liés à la bipédie et importance de l’articulation du genou

Dès l’acquisition de la bipédie et la mise en place de nouvelles adaptations morpho-fonctionnelles, des changements importants sont intervenus au niveau postural. La charge mécanique n’est pas répartie de la même manière sur les membres inférieurs et surtout sur l’articulation du genou des populations fossiles et actuelles. Chez ces dernières, la ligne de charge qui correspond aux points gravitaires du corps n’est pas uniforme et répond à certains paramètres liés au poids, à l’ossature, à la morphologie architecturale, à la disposition bipodale et à certaines pathologies congénitales, héréditaires et familiales des individus d’une population. A cet effet, la répartition des centres de gravité dans une station bipède, telle qu’elle est connue théoriquement dans les atlas d’Anatomie (de type garde-à-vous) n’est pas conforme à la réalité architecturale et posturale des populations. Celles-ci beaucoup plus importantes en termes d’individus dès les Homo sapiens modernes du Paléolithique supérieur, montrent déjà des adaptations posturales asymétriques bien visibles sur les articulations du membre inférieur, depuis l’articulation de la hanche jusqu’à celle astragalo-calcaneenme. Il est bien évident que parmi ces instabilités posturales, l’effet d’une dysplasie luxante de la hanche, par exemple, chez l’un des individus, est ressenti sur tout ou partie d’un des côtés atteint, donnant lieu à des asymétries de type dimensionnelles ou malformatives.

A la suite des observations biomécaniques sur les populations fossiles d’hommes modernes et des travaux sur les adaptations morpho-fonctionnelles sur des populations holocènes, il ressort que la station debout depuis la véritable acquisition bipède ne peut-être basée sur le schéma théorique actuel que l’on connaît en ligne droite mais plutôt sur la base de 3 morpho-types dans le plan sagittal (fig.2).
- Le type 1 extrême avec une articulation du genou en hyperextension
- Le type 2 avec une articulation fémoro-tibiale en alignement
- Le type 3 extrême avec une articulation du genou en légère flexion

![Image]

FIG. 2. — Centres de gravité liés à la bipédie en fonction des 3 morphotypes

Ces trois types répondent à une adaptation locomotrice, tantôt liée à certaines modifications posturales sous l’effet d’anomalies articulaires ou pathologiques (types 1 et 3), tantôt plus ou moins harmonieuse avec un certain équilibre dans la station bipodale (type 2), sachant qu’il est très rare de rencontrer une symétrie parfaite de la station debout en repos chez l’homme.

Les caractéristiques morpho-fonctionnelles du type 1 extrême se distinguent par une ligne de charge passant à l’avant des compartiments tibiaux donnant lieu à un plateau tibial qui a inversé la pente tibiale et une usure accentuée dans ses parties antérieures (arthrose des surfaces articulaires et ostéosclérose sous-tibiale). L’axe fémoro-tibial est brisé dans sa verticalité et s’oriente à son niveau
articulaire vers l’arrière. Les caractéristiques du type 3 extrême sont à l’inverse du premier. L’individu porteur d’une telle morphologie du genou est sous l’effet d’une ligne de charge passant à l’arrière du plateau tibial. Le genou est alors plus compressé dans sa partie postérieure, accentuant la pente tibiale dont l’usure de type arthrosique ainsi qu’une ostéosclérose se voit généralement dans ses surfaces postéro-médiale et latérale et sous le plateau tibial. L’axe vertical de la cuisse et de la jambe est là aussi brisé mais dans une orientation inverse que celle connue dans le type 1. Ici, il existe une légère flexion du genou qui sera souvent en relation avec des anomalies de type Genu varum (voir plus loin).

Le type intermédiaire (2) est porteur d’une ligne gravitaria plus ou moins équilibrée ; son genou aura tendance à avoir une charge répartie sur l’ensemble des surfaces des compartiments tibiaux, ce qui ne l’empêche pas de perdre cet équilibre dans le cas d’une asymétrie dimensionnelle gauche-droit.

De par ces trois adaptations morpho-fonctionnelles du genou, leurs variations mécaniques modifient bien entendu la projection d’équilibre dans le polygone de sustentation. La voûte plantaire, l’articulation astragalo-calcanéenne ou tarse postérieur et le tarse antérieur seront d’autant plus influencés soit dans la station debout de repos soit dans la locomotion. Dans le type 1 extrême, l’appui bipodal sera beaucoup plus important au niveau de l’arrière pied, alors que dans le type 3 extrême, c’est plutôt l’avant pied qui aura une charge beaucoup plus répartie. Sans avoir encore les preuves suffisantes d’une relation posturale crânienne et bipodale, il est fort probable que les deux types extrêmes soient en relation avec des mouvements antéro-postérieurs du tarse et de la tête liée à une architecture crânio-faciale et une posture occlusale de type extension pour le premier et flexion pour le second (fig. 3). Par ailleurs des travaux ostéopathiques ont montré une relation crânio-sacrée dans la dynamique des trajectoires de croissance crânienne et faciale.

FIG. 3 ET 3’. — Mouvements antéro-postérieurs de la tête et du thorax en fonction des morphotypes 1 et 3 extrêmes

Dans le plan frontal, l’asymétrie posturale du corps et surtout du membre inférieur existerait depuis les débuts de la marche, même si il est vrai, les segments pairs du squelette appendiculaire sont rarissimes chez les anciens hominidés. Les squelettes beaucoup plus nombreux et plus complets des hommes modernes, depuis le Paléolithique supérieur jusqu’aux populations holocènes et historiques, ont montré des asymétries dont les causes sont diverses (trauma, pathologies infectieuses, anomalies articulaires, scoliose ...).

FIG. 4. — Ouverture (coxa valga) et fermeture (coxa vara) de l’angle cervico-diaphysaire. Au milieu angle plus ou moins normal de 130°

LES ANOMALIES DE LA HANCHE ET LEURS EFFETS SUR LA POSTURE

Les malformations de la hanche rencontrées dans les populations médiévales du Val-de-Marne sont d’origines diverses et certaines d’entre elles présentent des diagnostics rétrospectifs indéniables en raison de la bonne conservation de squelettes entiers dans les sépultures. Presque toutes les pathologies coxo-fémorales et fémoro-tibiales sont présentes dont certaines montrait une prévalence de l’ordre de 35% dans la nécropole de Saint-Maurice. Dans cette nécropole, mais aussi à La Queue-En-Brie, on retrouve la luxation congénitale, la luxation traumatique, la luxation appuyée, la coxa vara congénitale, la coxa valga, la coxa plana, l’épiphysiolyse ou la coxa vara de l’adolescent, la dysplasie coxo-fémorale avec et sans subluxation (fig. 5, 6, 7, 8).

FIG. 5. — Luxation congénitale à son stade ultime sur un fémur provenant de la nécropole de la Queue-En-Brie

FIG. 6. — Luxation congénitale très avancée sur un fémur provenant de la nécropole de la Queue-En-Brie

FIG. 7. — Epiphysiolyse (ou coxa vara de l’adolescent) sur un fémur provenant de la nécropole de Saint-Maurice. Noter le glissement épiphysaire de la tête fémorale

FIG. 8. — Coxa vara congénitale probable sur un fémur provenant de la nécropole de Saint-Maurice.
Dans un travail récent, Dastugue [1994] avait reconnu dans la nécropole médiévale de La Queue En Brie, 4 luxations traumatiques de la hanche donnant lieu à des variétésiliaques des membres luxés lors de la tentative de reprise de la marche. Nous-mêmes, nous avons déterminé dans cette même nécropole 4 luxations congénitales dont 2 sont arrivées à leur stade ultime ainsi que 2 luxations appuyées et une coxa vara congénitale. La paléopathologie ostéo-articulaire des populations de cette nécropole n’est pas achevée, cependant l’importance des lésions infectieuses, notamment la présence de syphilis sur plusieurs individus adultes [Hadjouis, Andrieux et Dastugue, 1995], ainsi qu’une importante population à tendance ultrabrachycéphale [Cho et Hadjouis, 2005], dénotent le caractère familial et héréditaire par une endogamie dont les symptômes sont assez significatifs. Dans un autre cimetière protestant plus récent, daté du XVIIe siècle, et fouillé dans la commune de Saint-Maurice, au cours de l’été 2005, la population inhumée représentée par environ 200 squelettes montre des lésions de rachitisme et d’ostéomalacie sur presque 70% de la population ainsi que de nombreuses anomalies articulaires de la hanche et du genou (voir plus loin).

Il est intéressant de constater sur des squelettes entiers, l’effet des dysplasies luxantes de la hanche sur l’anatomie des membres inférieurs et supérieurs et du rachis du côté malade. En effet, dans ce type de malformations, on constate 2 effets déséquilibrant la posture : l’un est descendant donnant lieu à une asymétrie de l’ensemble du membre inférieur, notamment par l’installation d’une asymétrie dimensionnelle ainsi que des anomalies articulaires du genou et du pied. L’autre est ascendant et présente d’abord une bascule du bassin qui met en place une scoliose dorsale ou à double courbure, basculant du même coup l’épaule, toujours du même côté (fig. 9). L’installation d’une malformation luxante congénitale est d’autant plus caractéristique au niveau de la base du crâne, puisque ces bouleversements sont notés jusqu’au déséquilibre architectural crano-facial dont les trajectoires de croissance des écailles osseuses auront un effet dysharmonieux non seulement sur le visage mais également sur l’occlusion.

FIG. 9. — Les effets descendants et ascendants d’une dysplasie luxante de la hanche sur la posture

LES MALFORMATIONS ARTICULAIRES DU GENOU

Chez les Pongidés, la grande hauteur du bassin, la courte taille du fémur et sa rotation en abduction ont favorisé un Genu varum physiologique. En revanche, dès les Australopithèques mais surtout avec l’apparition du genre Homo, on assiste à la mise en place physiologique d’un Genu valgum qui s’est caractérisé notamment par l’acquisition d’un fémur plus long et en adduction.

Outre les diverses anomalies articulaires et autres pathologies soulevées plus haut qui déséquilibreront la posture bipodale, les adaptations morpho-fonctionnelles du membre inférieur des hommes modernes sont liées à un grand nombre de facteurs biomécaniques, qui agissant sur l’articulation du genou par le biais d’une charge gravitaire

226
du corps, déstabilisent les points d’équilibre au niveau de cette articulation et du même coup désorientent son rapport avec le sol.

Ces adaptations qui sont en fait le résultat de diverses fonctions professionnelles (lourdes charges sur la tête, le dos ou sur un des côtés de l’épaule chez par exemple les dockers du XIXᵉ et du XXᵉ siècles) ou sportives, fragilisent et altèrent le principal segment distal qu’est le genou.

LE GENU VARUM ET SES VARIATIONS ARTICULAIRES AU NIVEAU POSTURAL DANS LA POPULATION DE SAINT-MAURICE

Pour la première fois dans le département du Val-de-Marne, les fouilles archéologiques menées cet été sous la conduite de l’INRAP et du laboratoire départemental d’Archéologie, ont mis en évidence un cimetière protestant du XVIIᵉ siècle à Saint-Maurice, lieu déjà connu par les sources archivistiques notamment par la construction de deux temples, le premier en 1607, incendié lors d’une émeute catholique en 1621, le second en 1623. Ces deux temples de Charenton-Saint-Maurice ont été le seul lieu de culte huguenot francilien autorisé par l’Edit de Nantes signé en 1598. Parmi les 200 squelettes environ qui ont été dégagés (le cimetière en contenait réellement plus de 800), les os de la cuisse et de la jambe présentent un grand nombre d’anomalies articulaires de type Genu varum et Genu valgum. Le plus important est celui du Genu varum bilatéral qui est ici, secondaire à un rachitisme. Dans les travaux de Rhumatologie, les effets d’un rachitisme, de séquelles de fracture, de pathologie acquise dès l’enfance ou de gonarthrose sont bien connus sur la déviation de la jambe en dedans. En position debout pieds joints, les genoux sont séparés par une certaine distance, qui donne à cette déformation souvent bilatérale, des jambes en O ou en cerceau [RYCKAWAERT, 1987] (fig. 10). Dans le Genu varum, le point d’application de la charge subie par le genou, se déplace à l’intérieur dans le condyle médial du tibia (ou le compartiment fémoro-tibial interne), créant ainsi une hypersolicitation de la zone concernée qui se manifeste par un enfoncement exagéré par rapport au condyle latéral (fig. 11, 12).

FIG. 10. — Les anomalies du genou de type Genu valgum (au milieu) et Genu varum (à droite) par rapport à une posture bipodale dite normale.

Dans la population de Saint-Maurice, les séquelles du rachitisme chez les jeunes et de l’ostéomalacie chez les adultes sont importantes surtout au niveau des courbures axiales des fémurs et des tibias, cependant, pour ce type d’affections, nous n’avons mesuré que les squelettes jeunes-adultes et adultes, représentés par 69 squelettes en raison d’une meilleure précision biométrique sur des plateaux tibiaux soudés (fig. 13).

FIG. 13. — Mensurations sur le tibia pour la détermination des malformations articulaires du genou.

Même si les individus dont la croissance épiphysaire est en cours, ne sont pas pris en compte, le Genu varum d’origine tibiale est majoritaire dans cette population atteignant les 53,7% (fig. 14). Les fémurs correspondants à ce Genu varum bilatéral sont représentés par la mise en place d’importantes Coxa vara (59,5%) (fig.15) dont la fermeture de l’angle cervico-diaphysaire atteint parfois les 115° sur un axe fémoral très arqué. Les reconstitutions fémoro-tibiales présentant ce type d’anomalies articulaires sont reliées au sol par une posture bipodale dont certains tarses postérieurs sont également en pied varus. Ces derniers sont en train d’être mesurés et les résultats seront présentés prochainement.
FIG. 14. — Pourcentages des Genu valgum et varum dans la population de Saint-Maurice

FIG. 15. — Pourcentages des coxa vara et valga dans la population de Saint-Maurice
LE GENU VALGUM ET SES VARIATIONS ARTICULAIRES AU NIVEAU POSTURAL DANS LA POPULATION DE SAINT-MAURICE

Contrairement au Genu varum, le Genu valgum est plus souvent bilatéral et symétrique et se manifeste par une déviation en dehors de la jambe à partir du genou. En position debout ayant les cuisses accolées, les malleoles internes sont séparées par une certaine distance donnant un aspect de jambes en X. Ici le point d’application de la charge subie par le genou est déplacé à l’extérieur dans le condyle latéral du tibia (ou compartiment fémoro-tibial externe) (fig. 11). Les contraintes mécaniques exercées, sur cette surface articulaire, non seulement écrasent cette zone mais réagissent également par une arthrose avancée, une production ostéophytique périphérique du compartiment externe ainsi qu’une ostéosclérose sous-tibiale (fig. 16).

![Image](image.png)

FIG. 16. — Pressions sur le condyle latéral du tibia lors d’un Genu valgum Individu adulte de Saint-Maurice.

Il est bien évident que le Genu valgum d’origine fémorale de la population de Saint-Maurice n’est pas lié au rachitisme mais semble en relation avec d’autres affections, sachant que ce type de malformations, installé dans l’enfance, est le plus souvent idiopathique selon les diagnostics de la rhumatologie actuelle [RYCKWAERT, 1987]. Même s’il reste conséquent, le Genu valgum est ici moins important que la malformation précédente, puisque les individus porteurs représentent 36,8% (fig. 14). Les fémurs qui correspondent à ce type de genou bilatéral et symétrique montrent à leur tour d’importantes Coxa valga (32,9%) (fig.15). L’ouverture de l’angle cervico-diaphysaire dépasse parfois les 140° sur un axe tibial dont la courbure est souvent à concavité externe. Certaines reconstructions fémoro-tibiales sont en relation avec un pied valgus.

Il est intéressant de noter que les effets de ces deux malformations articulaires sur la posture et notamment sur l’ensemble du squelette du membre inférieur se caractérisent comme pour l’articulation de la hanche par les deux éléments essentiels sus et sous-jacents du genou. L’effet descendant se distingue par des anomalies de courbure de la jambe en valgus ou en varus et des anomalies du pied (varus, valgus, adductus, abductus). L’effet ascendant n’est pas aussi généralisé que celui visible notamment sur la hanche par les asymétries qui font suite à une dysplasie luxante. En revanche, il déstabilise tout aussi bien la cuisse par des anomalies de courbure du fémur ainsi que la mise en place d’importantes variations et autres malformations du col et de la tête fémorales (coxa valga, coxa vara) (fig. 17).

230
CONCLUSION

BIBLIOGRAPHIE

